
Information Systems
Division / 580

Advanced flight and scientific information systems will support
the execution and analysis of the scientific measurements and
observations of the Earth and the Sun-Earth system.

Good Software Practices

Interoperable Models Dec. 2002

Session Goal

To provide a general awareness of software management
issues for Goddard Technical Managers who want to gain
some familiarity with software issues that may affect the
success of their projects.

GSFC Mission Operations Software

General Mission Software Context

Mission Software Good Basic Practices

Recent GSFC Software Problems

Steps to Successful Software Products

Improvements In-Process/-Plan

Summary

Basic Definitions

• Software:
– Programs, procedures, rules, and any associated documentation

pertaining to the operation of a computer system
[ANSI/IEEE Standard 729-1983].

• Software Engineering:
– The systematic approach to the development, operation, maintenance,

and retirement of software through the use of suitable standards,
methods, tools, and procedures [ANSI/IEEE Standard 729-1983].

• Encompasses many diverse activities including requirements analysis,
architectural and detailed design, implementation (coding,
programming), assurance, testing, and maintenance.

• Not another term for programming or coding.
• Software Management:

– A disciplined approach to the planning, tracking, assessing, and
controlling of software product development through the selection and
use of specific methods, tools, and procedures [JPL D-2352].

Trends in GSFC Software

• Hardware memory and processors have increased significantly in capacity
and speed, but more is needed. MAP used 260MB of memory, for example.

• Software applications have become larger and more complex.
• More autonomy in the spacecraft and more complex instruments

and data processing.
• Much more software, both on-board and in the ground system.
• Ground and flight software, in concert, is assuming an increasing role in

mission capability and performance.
• Software costs can be as high as 25% of project costs.
• Greater use of generalized hardware with customization in the software

(and a desire to move toward reusable software components).
• System architecture is an integrated hardware-software design.

Software is an integral and critical part of today’s systems.Software is an integral and critical part of today’s systems.

Perceptions -- Two Sides of the Software Coin

Views of Project Managers (PMs) Views of Software Engineers (SWEs)

1. SWEs are not good at estimating
costs and schedules.

2. It’s hard to know the true status of
the software. I can’t tell what’
going on “over there”!

3. Why does it “take so long” to
develop software?! Isn’t it “just a
small matter of programming”?

1. PMs don’t accept realistic estimates,
but insist on cuts OR
they come to us with already
approved budgets and schedules
(“done deal”) that are unrealistic.

2. PMs often don’t take the time or know
how to ask the right questions to get
to the heart of issues OR they ignore
our warnings about the effects of
tradeoffs.

3. PMs don’t appreciate the difficulty of
software or understand the “ripple
effect” of changes.

And to Strike Fear in the Heart …

• The often cited Standish Group 1998 Study on large software projects in
the late 1990s reported
– 53% either delivered late or exceeded budget
– 31% were cancelled
– 16% were successful

• Average cost for a “failed” project is 189% of the original estimate
• Average delivery for a “failed” project is 222% of the original schedule
• On average “challenged” projects deliver 61% of specified functions
• The Standish Group recently performed a survey of IT managers:

– 27% believe there are now significantly more software failures
– 21% believe there are somewhat more failures
– 11% believe things haven’t changed at all
– 19% believe there are somewhat fewer failures
– 22% believe there are significantly fewer failures

Only 41% believe there are fewer failures now than five years ago !

GSFC Mission Operations Software

General Mission Software Context

Mission Software Good Basic Practices

Recent GSFC Software Problems

Steps to Successful Software Products

Improvements In-Process/-Plan

Summary

Mission Information Systems Providers

End-to-end data systems engineering of mission systems

Real-time ground mission data systems for
spacecraft integration and on-orbit ops (e.g.,
S/C command & control, launch and tracking
services)

Science data systems including
data processing, archival,
distribution, analysis & info mgmt.

Embedded spacecraft, instrument and
hardware component software

Off-line mission data systems (e.g., command
mgmt., S/C mission and science planning &
scheduling, guidance & navigation, network
scheduling)Advanced concept development

for archival, retrieval, display,
dissemination of science data

Technology R&D focused on autonomy, scientific analysis tools, distributed computing architectures
and

Tools and services in support of information management

ISD: End-to-End Information Systems Providers

581/Systems Integration &
Engineering
Margaret Caulfield, Vacant ABHs

End-to-end data systems
engineering of ISD mission
systems development activities.

582/Flight Software
Elaine Shell, Ray Whitley,
Kequan Luu, Ron Zellar

583/Mission Applications
Henry Murray, Scott Green

584/Real-Time Software
Engineering
Vacant BH, Dwayne Morgan/WFF,
John Donohue

585/Computing
Environments & Technology
Howard Eiserike, Steve Naus

586/Science Data Systems
Mike Seablom, Vacant ABH

587/Advanced Data
Management and Analysis
Jim Byrnes

588/Advanced Architectures
& Autonomy
Julie Breed, Barbie Brown-Medina

Real-time ground mission data
systems for I&T and on-orbit ops
(e.g., s/c command & control,
launch and tracking services)

Network manage., business/support
tool develop, WWW applicationsTools and services in support of

information management

Science data systems including
data processing, archival,
distribution, analysis & info man.

Next-gen req. development, testbed for
sys evaluation, prototype products

Advanced concept development
for archival, retrieval, display,
dissemination of science data

Sys. eng & implementation, human-
computer eng., technology evaluations,
concept prototypes, sw eng. methods

Technology R&D focused on space-
ground automation and autonomy
sys, advanced architectures, and
advanced scientific tools and
systems

Sys. eng.& implementation, COTS
application, simulators, testbeds for
concept proof/prototyping in ops env.

Sys. eng.& implementation, COTS
application & integration, testbeds,
prototyping

Branch Functional Area/Products Services

Mission directors, ground sys/flight ops
management, sys. eng., flight prep
support, SW eng, Sys I&T, AO prep

End-to-end FSW development;
simulation s/w; spacecraft
sustaining engineering

Embedded spacecraft, instrument
and hardware component
softwares; FSW testbeds

Sys. eng.& implementation, COTS
application, testbeds for concept
proof/prototyping in ops environment

Off-line mission data systems
(e.g., Command man., s/c mission
and science P&S, GN&C, NCC

GSFC Mission Critical Software Implementation Overview (1 of 2)

• System elements are often based on prior mission systems identified in Formulation up to
Preliminary Design (a reuse & evolution approach)

• Core software practices follow generally accepted Software Engineering practices such
as:
Documents

– Product Development Plan, Requirements, IRD/ICDs, Operations Concepts, …
Formal Reviews

– Requirements, Preliminary & Critical Design, Test Readiness, Mission Ops., …
Practices

– Design and code walkthroughs
– Software development folders
– Early and intermediate build and test
– Requirements-to-test matrices
– Test scenario development and walkthroughs
– Test coverage and test results analysis and sign-off
– Problem id and tracking
– Configuration Management processes

GSFC Mission Critical Software Implementation Overview (2 of 2)

• Selected implementation methodologies are Project & domain specific, ranging from
Yourdon methods to Object Oriented (OO) methods, using waterfall to spiral approaches,
and implemented utilizing assembly computer languages to Java

• New technologies and software engineering practices are adapted when benefits/risks
are accepted by Projects, e.g.

– Health & Safety (H&S) and routine command operations automation in IMAGE,
XTE, TRMM, etc., enabling lights-dim operations cost savings

– adaptation of LabView for ISTP science level 0 data processing to prolong the
ISTP system life by reducing operations costs

– Auto code generation in the MAP, SDO, GPM attitude control systems
– Rational Rose Real-time autocode generation for JWST Common flight software

• Critical systems are evaluated by the NASA IV&V Facility for process integrity …
covering requirements/design/code/test

GSFC’s reuse-and-evolve approach is a strategy that is ‘ cost effective’ and risk averse,
while enabling tailoring to specific needs and accumulating functionality

Different Domains of Software Each Reflect A Different Emphasis

Flight Software
- driven by limited S/C life, asset survival, &

mission science program
- continuous critical real-time ops, from

attitude control to H&S monitoring
- fixed & constrained environment
- minimize risk with a never fail mindset
- restricted maintenance opportunities

Mission Control Ground Systems
- driven by limited S/C life, asset health, and

observatory user demands
- episodic real-time & near-time ops, from

command uplink to system state evaluations
- open to needs based augmentation
- risk adverse with a fail soft/over mindset
- full shadow maintenance capability

… Do

Science Data Management & Data
Processing

- data retention & integrity driven
- near-time and later ops, from raw archival to

signature calibrations and analysis
- flexible & extendable environment
- data fail soft mindset
- shadow mode and add-on maintenance

Science Data Dissemination
- science evolution & user driven
- near-time and later ops
- large user communities
- evolving user interfaces & access demands
- timely data delivery mindset
- shadow mode and add-on maintenance

main Tailored Development & Qualification Approaches

Broad Range of Domain Expertise

• GSFC mission success is built upon long term staff experience across a broad range of
missions in earth and space science

• Significant enablers include close interaction with the GSFC science community, S/C
hardware engineering, and mission flight operations personnel

• Specific software application domains include:
- S/C and instrument flight software
- ground command & control systems, including ground stations
- guidance & navigation operations systems
- science and mission planning & scheduling systems
- science data processing, archival, distribution, and calibration

systems
- science data analysis & modeling systems

• Software definition, development, and qualification is tailored to each Project with risk
mitigation strategies keyed to mission criticality and software domain

Software Life-Cycle Products

Basic Software life-cycle “products” include
– Software Product Plan, Software Schedule with Dependencies
– Software Requirements Document (SRD)
– Preliminary & Critical Design Reviews
– Release/build Plan
– Interface Control Document(s) (ICDs)
– Information/Data Needs Schedules
– Functional and Detailed Design Documents
– Software Integration and Test Plans
– Test and Verification Matrix
– Software User’s Guide
– Release Definition Letters
– Delivery, Installation, Operations, and Maintenance Plan(s)
– Problem Tracking & Prioritized Work-off Schedule

All Software will need maintenance
– Maintenance must be included in planning
– What and how much depends on the use of the software
– Maintenance most often is done in response to existing known software
errors, to add functionality, or to adapt to a changed environment

GSFC Problem Summary Perspective

• Most mission systems include Mission Critical Software (MCS) elements for:
Control Centers, S/C FSW, Instrument FSW, Planning & Scheduling, and
Orbit/Attitude Navigation

• Over the last 5 years GSFC has held responsibility for well over 25 missions or
well over 125 MCS elements

• GSFC has experienced 3 significant problems, computing to less than a 2.5%
significant problem rate:

– EOS FOS, EO-1 FSW, and IRAC FSW

While few in number, each was significant and drew a lot of attention

• No GSFC software problem has directly contributed to in-flight damage; to the
contrary, software is routinely used to compensate for problems on-orbit

• To further improve performance and to reduce hero mode dependence,
pragmatic improvement steps can be taken

MAP FSW - One of Many Successes

Date Cost Relevance Launch Bodies (or MY)

Fall 1995 FSW Start May 2001 realistic cost

1996 - 2000 Single string--> almost entirely fully redundant sensors/actuators/CPU
2 new testers added realistic cost +2

Spring 2000 FSW Accept. Test/Red Team Review stunned at FSW readiness

Winter 2000 December 2001 cost still in scope

December 2001 Launch ‘virtually on-cost’

Some MAP FSW Points of Note

• Very FSW sensitive MAP Project Mgmt. and Systems Engineering
– Supported honest cost estimates & supported FSW issues

• EO-1 Space Act Agreement meant MAP FSW was deliverable to EO-1 (earlier
launch). Problems related to coordination of FSW deliveries & support to EO-1
were routine for 3 years.

• Reused XTE FSW plus XTE FSW staff -- rehosted to new CPU, memory,RTOS
• Single FSW Team managed by single FSW Sys. Mgr.
• FSW Team co-located with ground systems, GN&C analysts, ESC hardware

developers.
• GN&C analysts & FOT were active members of the FSW Test Team.
• Developed C compiler for R000 CPU rather than using assembler.
• New FSW Executive for the R000 was a problem, but the team dealt with it.
• FSW for alternate star trackers became a requirement (==> 2 separate FSW

loads).
• Outstanding Immediate Replacement for FSW Sys. Mgr. who resigned.
• Experienced and independent BT/Sys. Test Lead was involved from ‘day 1’.
• 5 mos. delay in receipt of hardware for FSW testbed was mitigated by the team.
• Strong controls. Pretty good processes.
• Excellent FSW Requirements. Excellent FSW Test Traceability and Scenarios.

MAP FSW Staffing Profiles

Staffing Profile - Roles - Quarterly Actuals

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

Fac/Tools 0.63 0.63 0.63 0.63 0.83 0.83 0.83 0.83 1.05 1.05 1.05 1.05 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.83 0.63 0.63 0.63 0.63

Test 0.74 0.74 0.74 0.74 1.39 1.39 3.56 4.47 6.63 7.13 9.46 10.63 9.52 7.10 6.77 5.60 5.30 5.30 5.30 5.30 4.10 4.10 4.10 4.10

Dev 5.50 5.50 5.50 5.50 9.15 9.15 9.15 9.15 7.58 7.58 6.83 6.83 4.77 4.77 4.77 4.77 2.87 2.87 2.87 2.87 2.67 2.67 2.67 2.67

Eng/Mgmt 1.80 1.80 1.80 1.80 1.94 1.94 1.94 1.94 1.68 1.68 1.68 1.68 1.60 1.60 1.60 1.60 1.00 1.00 1.00 1.00 0.80 0.80 0.80 0.80

OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS

1995 1996 1996 1996 1996 1997 1997 1997 1997 1998 1998 1998 1998 1999 1999 1999 1999 2000 2000 2000 2000 2001 2001 2001

Staffing Profile - Seniority - Quarterly Actuals

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00
22.00

Junior (J) 0.30 0.30 0.30 0.30 0.50 0.50 1.50 1.83 2.72 2.72 3.72 4.22 3.67 2.00 1.67 1.50 1.50 1.50 1.50 1.50 0.30 0.30 0.30 0.30

Interm. (I) 2.89 2.89 2.89 2.89 5.33 5.33 5.33 5.33 4.92 4.92 5.25 5.92 4.02 4.02 4.02 4.02 4.32 4.32 4.32 4.32 4.32 4.32 4.32 4.32

Senior (S) 5.48 5.48 5.48 5.48 7.48 7.48 8.65 9.23 9.30 9.80 10.05 10.05 9.03 8.28 8.28 7.28 4.18 4.18 4.18 4.18 3.58 3.58 3.58 3.58

OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS OND JFM AMJ JAS

1995 1996 1996 1996 1996 1997 1997 1997 1997 1998 1998 1998 1998 1999 1999 1999 1999 2000 2000 2000 2000 2001 2001 2001

MAP FSW Staffing View on a 75SYr Effort

CS vs SSC Mix
(Whole Project)

CS
63%

SSC
37%

Development vs Test Mix
(Whole Project)

Fac/Tools
6%

Test
38% Dev

44%

Eng/Mgmt
12%

Seniority Mix
(Whole Project)

Junior
12%

Inter.
35%

Senior
53%

SubSystem Mix
(Whole Project)

HDS
3%

other
24%

PSE
1%

ACS
45%

C&DH
23%

ACE
4%

All deliveries on schedule and with full capabilities, with
core system completed a year before launch …..

1 of 122 success stories over the last 5 years

GSFC Mission Operations Software

General Mission Software Context

Mission Software Good Basic Practices

Recent GSFC Software Problems

Steps to Successful Software Products

Improvements In-Process/-Plan

Summary

Mission Critical Development Problems: FOS (1 of 3)

• Problem:
– The Flight Operations Segment (FOS) was a new control center

architecture designed to support the operations of the EOS Terra,
Aqua, ICESat and Aura spacecraft. The FOS was developed by
Lockheed Martin under subcontract to the Raytheon Corporation as
part of the EOS Core System (ECS) Performance Based Contract
(PBC).

– In 1998, Raytheon issued a stop work order to Lockheed Martin due
to a myriad of performance and functionality problems with FOS.

• Consequence:
– The Terra launch was delayed for over a year due in large part to

problems with FOS and the time necessary to develop a replacement
control center system.

Mission Critical Development Problems: FOS (2 of 3)

• Causes:
– The development of the FOS was tightly coupled with / driven by the development of a

first of a kind earth science data processing system (SDPS) of unparalleled scope also
being developed under the ECS PBC

• The FOS and SDPS were forced to identical schedules of two drops each
• Imposed the SDPS development methodology on the FOS

– Contractor underestimated coding effort due to lack of practical C++
experience

– As soon as developers had experience with C++, they left for higher paying jobs
• Key FOS infrastructure components delegated to another contract element charged

with developing common components for both FOS and SDPS
– The true commonality between FOS and SDPS was minimal
– The “common” development organization fell apart

– FOS relied heavily on common systems and COTS
• A common user interface across all FOS subsystems
• Distributed Computer Env. never worked & there was no real need for Sybase

– Wrong metrics were established and tracked for FOS
• Code & unit test were tracked accurately, giving the early impression that FOS was

progressing on schedule
• There was inadequate emphasis on actual mission functionality

– Requirements were very high-level, and all were treated equally
• The requirements were at a high-level & not prioritized in order to give the PBC

maximum flexibility in the development process.

Mission Critical Development Problems: FOS (3 of 3)

• Recovery:
– The FOS was replaced with a system which came to be known as the EOS

Mission Operations System (EMOS). EMOS is composed of one of the
FOS subsystems (Mission Management) which was salvageable, a
Raytheon (the prime ECS contractor) COTS (with special tailoring)
product called Eclipse for real-time spacecraft command and control and
an Integral Systems Inc. tailored product called ABE for trending and
analysis.

– EMOS was used to support Terra launch, has been modified to support
the recent launch of Aqua, and is currently successfully supporting Terra
and Aqua operations. Additional modifications are underway to support
Aura launch and operations.

– The responsibility for developing the control center for ICESat was given
to LASP.

Mission Critical Development Problems: EO-1 (1 of 3)

• Problem:
– The EO-1 flight software was a new implementation based on a MAP initial

development drop. The EO-1 flight software was part of a Space Act
Agreement with SWALES and Litton Industries. Cost and schedule
pressures greatly constrained FSW development staffing and no HiFi
simulation test environment was funded. The plan was to do the FSW test
& debug as part of early I&T.

– As I&T was about to commence lots of performance, functionality, and
configuration management issues were identified. The Project manager
invoked a call for hero mode support.

• Consequence:
– A very senior FSW CS specialist was pulled from other important duties.

Funds suddenly became available for staff and equipment.
The FSW was resolved concurrent with other mission element completions.

Mission Critical Development Problems: EO-1 (2 of 3)

• Causes:
– The EO-1 flight software was part of a cost cap forcing minimal staff and

minimal schedule approaches.
– System FSW leadership was absent and had no representation/voice at the

EO-1 Project level.
– Multiple FSW efforts (EO-1 has eleven CPUs) reporting to different

hardware subsystem managers.
– The MAP ‘heritage’ FSW, while started before EO-1 award, was actually

scheduled for launch after EO-1 and IMAGE. The MAP FSW had no
flight or even I&T burn-in history, although MAP had both XTE and
TRMM flight heritage.

– The EO-1 FSW testbed was of low fidelity in its C&DH and distributed
architecture.

– The basic plan of using I&T to debug the FSW without first executing a
thorough HiFi test program indeed demonstrated itself as too risky.

– Few processes were shared across CPUs.

Mission Critical Development Problems: EO-1 (3 of 3)

• Recovery:
– A Sr. FSW Lead CS was pulled from other work and assigned full time.

He was given full systems engineering authority over all FSW activities,
across all CPUs.

– The new FSW Lead reported directly to the Project Manager.
– The Project funded & established the required HiFi testbed and funded

additional FSW staff.
– Good engineering practices were defined and enforced across all CPUs.
– Thorough HiFi testing was completed and the FSW stabilized.
– The EO-1 FSW met EO-1 launch and has performed extremely well on-

orbit.

Mission Critical Development Problems: IRAC (1 of 3)

• Problem:
– The IRAC flight software is a new science instrument implementation

responsible for operating a complex SIRTF mission IR camera with many
mechanisms and data modes. As initial hardware & software integration
started at GSFC, in preparations for IRAC test & delivery, a handful of
troubling problems began to emerge.

– The sole FSW person working this ‘ firmware’ effort took a job outside of
NASA. Initial recovery efforts proved a discovery process, with new
problems surfacing as fast as others were resolved.

• Consequence:
– A very senior FSW CS specialist (having just worked EO-1) was pulled

from other technical & management duties.
Funds suddenly became available for staff and equipment.
IRAC delivery to payload integration was delayed about a year.

Mission Critical Development Problems: IRAC (2 of 3)

• Causes:
– The IRAC FSW was declared ‘ firmware’ to hold costs

• avoiding some perceived software process overhead
• avoiding the need to address change development/verification once

the PROMs were burned
– The IRAC firmware/FSW had no representation/voice at the IRAC

instrument level nor SIRTF mission level.
– Do it all as a one person job working hand-in-glove with the electronics

engineers. As IRAC I&T was gearing up the ‘ one person’ took another
job outside of NASA.

– The baseline testbed lacked the fidelity to test concurrent detector
readouts, central to IRAC normal operations. Testing the FSW
concurrent with electronics debug on the same platform was not viable.

– Other NASA mission failures late in the IRAC development phase shifted
the IRAC reference from one of success to one of near assured success.
This drove IRAC into a requirements verification effort far beyond initial
plans.

Mission Critical Development Problems: IRAC (3 of 3)

• Recovery:
– A Sr. FSW Lead CS was pulled from other work and assigned full time.

He was given full systems engineering authority over all IRAC FSW
activities.

– Good engineering practices were defined and enforced, ranging from
establishing a Change Board to using earned value in measuring real
progress.

– The Project funded & provided the HiFi testbed needed. The Project also
funded significant additional FSW staff (4 SSCs and 6 CSs).

– A formal FSW requirements review (update) was conducted with SAO,
JPL, and Lockheed. A design and code walktrough was conducted.

– A thorough HiFi testing program keyed to documented requirements and
cross-referenced to S/C level and instrument verification requirements was
completed and the FSW stabilized.

– The IRAC instrument with FSW has performed extremely well through
Ball Aerospace instrument integration and cryo testing and into on-going
S/C level testing at Lockheed.

Mission Critical Software Problems … Lessons Learned

• Software/Operations needs a voice at the Project mission level.

• Software / Operations knowledgeable senior managers, with (budget) authority and
responsibility for the efforts, is a major key to success.

• Incremental development and integration keyed to important functionality and test of SW
systems saves life cycle cost and reduces risk; however, it requires money and coordination
up-front.

• High fidelity simulation systems are centrally important in test efforts.

• Test, test, and re-test, and “test as you fly” are keys to successful development.

• Many Project Managers have limited software experience & insight and press software
schedule and staffing plans too hard to help meet competitive cost caps.

• Issues need to be driven up through both the Engineering and Projects management chains.

• With increased SW complexity (e.g., multiple onboard computers) and functionality, comes
the need for an expanded Project system verification and validation program which cannot be
compromised. Increased capability also means increased SW costs.

GSFC Mission Operations Software

General Mission Software Context

Mission Software Good Basic Practices

Recent GSFC Software Problems

Steps to Successful Software Products

Improvements In-Process/-Plan

Summary

Follow Known Good Engineering Practices And Reject Pressures To
The Contrary … Raise Issues Through Both Engineering and Project

Senior Management Chains
• Ensure dedicated & experienced software systems staff from concept through launch
• Get software presence at the Project Manager table
• Ensure thorough requirements definition and sign-off
• Resist program pressures toward schedule and staffing compressions and resist unrealistic budget-

induced cuts (use data & experience with recent comparable systems)
• Get good people and delegate responsibility and authority to get things done

- experienced team lead & key team member continuity are essential
• Measure progress against a known team schedule in some earned value process
• Conduct standard formal reviews (requirements, design, test, operations readiness)
• Conduct & document design and code walkthroughs, with customer & external experts
• Ensure high fidelity test environments with ETUs for flight SW
• Insist on a thorough software and mission test program. Test as you fly when you can
• Test failure and contingency scenarios and then test even more of them
• Involve the flight team in system and mission test definition and execution
• Establish and follow sound CM practices

Steps To Mission Critical Software Success… Development Org’s Perspective

Steps to Mission Critical Software Success… Project Perspective

Acquire a team with good software engineering practices and provide the resources to get the job
done. Make Sr. SW Managers part of the Project team. Conduct an extensive test program.
Ensure SE & Ops participation.

• Choose an experienced Development organization... good processes and proven people
• Provide adequate budget and schedule for proper software processes to be followed
• Acquire knowledgeable and experienced Senior Software Managers for Flight Software and

Ground Systems & Operations -- who report directly to the Project Manager with budget and
technical management authority

• Provide a strong test program lead manager advancing “test as you fly” (test beds & flight
vehicle) and coordinating incremental delivery & test of flight and ground capabilities

• Provide systems engineering support for HW/SW trades and life cycle trades
• Insist upon and support design reviews, peer reviews, code walkthroughs, etc
• Establish and conduct an effective and tailored Project Verification & Validation effort
• Insist upon and support software PA and QA best practices
• Provide and follow a SW CM plan
• Ensure that the HW test engineers schedule time to support SW Project Verification &

Validation and operations development
• Involve the Operations team in the SW Project Verification & Validation efforts
• Conduct extensive simulations and training exercises
• The use of a single Ground Data System & database for FSW test, S/C integration and

test and operations reduces risk and lifecycle cost; however, it costs money up-front
• Retain adequate SW development maintenance staff into the operations phase

Alarm Signs for Potential Problems (1 of 2)

Requirements Process:
Unbaselined requirements and interfaces.
Requirements instability (high rate of change reflecting immature definition).
Lack of requirements detail and/or requirements in discovery.
Operations Concept isn’t matured for all mission life phases.
Build & Test Process:
Software processes aren’t tailored based on mission experiences/risks.
Inadequate incremental delivery plan without real per build functionality.
Compressed schedules portrayed in few builds/releases and sacrifices in the test schedule

(made to fit solutions).
Imposed software staff levels vs. well thought out approach (unusually low).
Lack of walkthroughs and peer reviews, with effective customer involvement.
Inadequate test plans and tools.
Poor fidelity simulation test environments.
Schedules seem to be constantly replanned with loss of the previous baseline.
Dependent deliveries from external organizations are delayed (e.g., ETU h/w, ICDs).
Poor CM.

Alarm Signs of Potential Problems (2 of 2)

Systems Management:
Software systems engineering isn’t actively involved during early mission definition or

design phases -- participate in trades, explain software impacts of decisions,
A single Software Manager is assigned as responsible for flight, ground and operations.
FSW Systems and Ground Systems/Operations Managers are not an integral part of

the Project Manager’s immediate team.
FSW Systems Manager isn’t given budget or influence over all mission flight software.
Ground Systems & Ops Manager isn’t given budget or influence over all mission

ground and operations elements.
Experienced mission software engineering specialists are not in key lead positions.
Project level systems engineering isn’t effective in mitigating software risks.
Systems engineering doesn’t consider multiple solution sets or effect timely decisions.
Technical status reporting to Management isn’t frequent or comprehensive.
In-House Engineering’s management involvement with the Project is distant.

What Is A Software Life-Cycle ?

• Most projects use iterative life-cycles, but all show some form of
“requirements-design-build-test.”

• Most life-cycles are depicted as GANTT-type schedules.
• Software life cycles have intermediate reviews and products that

provide completion and coordination points with other project
elements or other sub-processes
– Plan/Commitment, Software Requirements,

Software Design, Code Inspection, Test and Operational
Readiness Reviews

• Maintenance generally follows this same implementation cycle ‘in
the small’.

FSW Staffing Profile

FSW/Tools Developers

FSW Sys. Engineer

FSW Test Specialists
FSW

Maint.

FSW Test Specialists

Build Test (2)

Build Test (n)

Build Test (1)

1

Mission SIMs

Prototypes ->

S/C
SRR

Ops
Concept
Review

S/C
PDR

S/C
CDR

Start
Box
I&T

Start
S/C
I&T

End
S/C
I&T Launch

FSW
Milestones

FSW
SRR

FSW
PDR

FSW
CDR

FSW
Initial

Acceptance
FSW
TRR

FSW Team
Development,
Unit Test, &
Integration
onto H/W

FSW
Specialist
Testing n

P

Build 1 ->

Build n ->
Cleanup Build(s) ->

FSW
Test
Plan

IT

Code/Unit Test (n) IT

Code/Unit Test (1)

SIM Prep./Dry RunsEnd-to-end Ops. Testing ->

Prototypes ->

Build 1 ->

Build n ->

Cleanup Build(s) -> RegressionTests

1st
CPT IOC

FSW
Launch

Readiness

C

ETU Testbed

Breadboard Lab.

Prep.

Prep.

Prep.

Prelim. Design Critical DesignRequ. Analysis

FSW Team
Requirements & Design

7/18/00

Prep.

...

...

FSW Sys. Engineer

FSW/Tools Developers

FSW Life-Cycle

System Test/V&VSystem Test/V&V Prep.System Test/V&V ->

...

...

FSW Maintenance Prep. Maint.

C

Code/Unit Test (2) IT

Code/
Unit Test (C) Code/Unit Test (C)IT

C CC

Measuring to Assist Project Management

• Measuring progress
– Are the software development activities on schedule?

• Earned Value Management (EVM) is our best
and most successful measurement example.

• Tie EVM to all life-cycle products,
not lines of code or only the number of modules.

– Should I make changes? What types of changes?
• Measuring quality

– Will the software perform correctly?
– Will the software fail? at critical times?

• Measuring functionality
– Will the software do all the things it is expected to do?
– Will all capabilities be included?

Simple Example of Managing Progress

Sample 5-month Project

Earned value is an excellent goal utilizing measures for management.

0

100

200

300

400

1/12 1/26 2/9 2/23 3/8 3/22 4/5 4/29 5/3 5/27

Po
in

ts

Total Planned Total Actual Baseline Points
Date

700

600

500

Each module (165) assigned 4 points: 1-designed; 2- coded; 3-inspected; 4-integrated

Sample Earned Value Engineering Build Test Profile

Run for Record - Counts (ETU)

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

Run for Record Plan Run for Record Actual

Current GSFC Mission Software Test Process (1 of 2)

Type Purpose Who

Unit Tests Confirm code design and logic Programmers

Integration Tests Integrate Units together into Development Team
target hardware environment

Build Tests Verify using high fidelity simulation S/W Test Specialists,
environment that requirements Subsystem Experts,
were implemented correctly

*System Tests Validate using high fidelity simulation S/W Test Specialists,
environment that the defined software maintenance staff,
system supports exhaustive Subsystem Experts,
operations and contingency scenarios Ops Team

**Acceptance Test Execute the full set of systems tests Same as systems
on the ‘final’ release of the s/w

Notes: * Systems Test Readiness Review precedes start of systems tests.
** Software Acceptance Test Review follows completion of AT

Current GSFC Mission Software Test Process (2 of 2)

Type Purpose Who

HW-SW Integration Tests Confirm h/w - s/w interfaces H/W & S/W eng’rs

Regression Tests Confirm that s/w changes S/W Test Specialists
don’t impact previously working
functionality and performance.

Stress Tests Confirm that Maximum CPU, I/O, S/W Test Specialists
etc. loads don’t impact performance.

End-to-end Tests Validate all flight/ground Operations Staff,
data flow scenarios S/W Test Teams,

Subsystem Experts

Mission Simulations Exercise nominal and Mission Systems Engineering,
‘surprise’-anomalous Operations Staff,
operational scenarios (Launch Subsystem Experts,
thru science ops.) Launch support team

GSFC Mission Operations Software

General Mission Software Context

Mission Software Good Basic Practices

Recent GSFC Software Problems

Steps to Successful Software Products

Improvements In-Process/-Plan

Summary

Software Management Improvements In Process
- Organizational

• Established a prototype new business WBS template for in-house
development including software as a direct Project level reporting element
(vs. subsystem embedded).

• A senior flight software systems person and a senior ground systems &
operations person should be part of the key Project Manager staff.

• Project level roles have been established on missions like SDO, GPM, and
JWST.

• Over the last year the GSFC Applied Engineering & Technology (AET) and
Flight Programs & Projects (FPP) Directorates have jointly reasserted a
strong AETD organizational technical product responsibility. This is
reflected in:
– the establishment of per Project AETD Engineering Panels providing

monthly AETD Management status briefs
– the ISD has also established Branch bimonthly Technical Status briefs.

• AETD’s recognition of software system significance is reflected in part in the
selection of GSFC’s current Chief Engineer (very experienced in Project
software development)

Software Management Improvements In Process
- Technical

• Documented practices for software development across GSFC as part of ISO
(a general resource). Need to be vigilant in assuring compliance to basic good
engineering practices:
– ISD Product Development Handbook (per product plan signed by Project

& ISD)
– GPG on Software Development and Maintenance

• A series of ‘ FSW Next ‘ discussions over the last six months , motivated in
large part in response to Project cost concerns, identified the need for:
– FSW Roadmap and evolution planning ...
– Improving functional reuse using packaging concepts of domain modeling

and information bus publishing/subscription systems with the potential for
significant long term risk reduction and cost avoidance , but …

………… there is little to no funding or specific project interest.
• Active in evaluating the benefits/applicability of the CMMI continuous model

to GSFC critical software products…

KEY CONCERN:
Demonstrated ‘value added’ is essential to promote effective change

July ‘02 MCS Colloquium Follow-Up Actions

1. Review JPL’s methodology & processes in identifying JPL MCS issues and assess what makes sense for
further GSFC software look-back. Do appropriate additional GSFC MCS evaluations (JPL also looked
at cost growth).

2. Establish software management/oversight classroom and rotation training assignments for Systems
Engineers and Project Managers (look to ISD’s TMT pitch, the SEED program, evaluate JPL’s project
manager training materials).

3. Conduct joint AET and FPP Directorate level software reviews of specific project MCS plans to help
assure that in-question mission baseline schedules and resources are reasonable (QLR Team concept).

4. Energize and continue in-process improvement efforts: (i) CMMI, (ii) documentation of existing good
MCS practices, and (iii) creation of a MCS risk management plan.

5. Define important mission critical infrastructure needs & benefits and recommend improvements, with
approaches for FSW reusable core capability and tools. Provide advocacy & additional resources to
advance reuse, including process standards and improvements.

6. Assure FSW and Ground System & Operations Lead Software Managers are at the Project Managers
table for future missions

7. Define methods to measure progress in the above actions.

8. Identify useful metrics for reporting MCS progress/problems to GSFC & HQ management. How do the
improvement steps above reflect in these metrics ?

MCS Colloquium Actions Plans (1 of 2)

ACTION PLAN LEAD

1. Additional GSFC MCS 3 to 4 staff months S. Green/583 and
look-back study (1/4 CS & 1 SSC) J. Donohue/584

2. SEng & PMgr 6 staff months S. Godfrey and
training (1/3 CS & 1 SSC) $125k CMMI

3. Joint AETD & FPPD Prototype efforts Steve Scott/500 &
MCS feasibility checks in place J. Hennessy

4. MCS good practices Multi year funds E. Shell/582 &
doc and deployment request: S. Godfrey/583

(1 FSW CS w/BF & J. Hennessy
and 2 SSC for ‘03 $300k CMMI
- ‘05 and 1 SSC for
deployment in ‘04
and ‘05) -
$600k, $800k, and $800k

MCS Colloquium Actions Plans (2 of 2)

ACTION PLAN LEAD

5. FSW tools & methods Funds request E. Shell/582 &
in reuse, architectures,... (1 FSW CS w/BF & J. Hennessy

1.5 SSC) - $425 perFY)

6. At PMgrs Table Confirm in NB WBS M. Chu/580
and look at SDO/GPM/
JWST

7. Reporting Progress Actions 1 to 6 & 8 M. Chu/580

8. MCS Metrics Earned value based M. Chu/580
schedules & issues chart ? $100k CMMI
How do improvements
reflect in these ?
(1/4 CS and 1/2 SSC)

GSFC CMMI Benefits & First Year Efforts

• Anticipated CMMI Benefits
– More consistent engineering & project management
– Less “fire-fighting”
– More cost/schedule predictability
– Easier to bring new people up to speed
– Increased productivity and improved quality
– Reduced cycle time

• GSFC FY02 Goals (Phase 1-Assessment Phase):
– to benchmark different pilot areas of GSFC
– get better cost & effort estimate for doing CMMI
– evaluate improvement approach
– begin establishing infrastructure to support improvement

• Pilots completed in 10/02. Evaluation summary by 1/02/03
• Little process improvement planned in this pilot year
• Completed planned baselining; Established infrastructure for improvement
• GSFC flight software, flight projects/system engineering/acquisition, and

ground software have been informally assessed using external experts

Strategies/Plans for FY03

Phase 2: Improvement Phase (4-5 year period)
• Focus more on improvements --Will work with projects/managers to

choose areas where greatest benefit can be obtained
• Will use continuous model of CMMI- focus on areas where GSFC feels it

needs to improve
• Initial primary improvement areas will be in flight software

– Documentation of existing best practices (& suggested improvements)
– Tools, checklist, templates to support consistent use of practices
– Will continue activities started in FY02

• Using flight software practices as a basis, best practices will be
documented for all of ISD

• Will work with systems engineering to pilot a small improvement
• Will begin to assess software acquisition processes to identify

improvement opportunities
• Phase in improvements with projects in early stages
• Plan to choose one primary flight project to focus on

GSFC Mission Operations Software

General Mission Software Context

Mission Software Good Basic Practices

Recent GSFC Software Problems

Steps to Successful Software Products

Improvements In-Process/-Plan

Summary

Software Management Considerations (1 of 2)

• 1. ISD’s software cost estimations generally prove to be accurate.
Projects often exceed schedule/cost because projects constraints force
unrealistic baselines.

• 2. You need the right skill mix on the team and a capable, experienced
Software Manager to oversee & guide it all.

• 3. Make sure the person(s) responsible for overall flight software and
ground systems & operations development and integration report
directly to the project manager.

• 4. Never identify a critical software task as a one-person effort. Always
have a second person (at least) to share the knowledge and the interface
responsibilities.

• 5. When planning resources, use the rules of thumb that the test effort
for ground software should be at least 30% of the total effort, and the
test effort for flight software should be about 50% of the total effort.
Remember that this staffing continues through integration and test.

Software Management Considerations (2 of 2)

• 6. Baseline software requirements early, and then manage “scope
creep”. Ensure software requirements are based on an accurate
operations concept. Designate one person responsible for the software
requirements document and make sure that person is experienced in &
knowledgeable of comparable software.

• 7. Don’t cut corners in your management processes by calling software
“firmware”. It still requires the rigorous management processes of
software development.

• 8. A good testbed is a requirement. Flight software testbeds must have
all the Engineering Test Units and simulators for each and every
external interface.

• 9. Software is required to validate your testbed. This software is needed
very early in the project’s life-cycle.

• 10. Distributed flight systems are expensive. You need a testbed of each
processor, and then a combined testbed.

• 11. Problems uncovered in Integration and Test will often be “fixed” in
the flight software, driving flight software to always come in just under
the wire.

… and In Conclusion

• While there are no “silver bullets”, there are proven
techniques to manage software.

• Even heroes will fail with inadequate resources.

• Software Management needs to be
approached as the technical discipline it is,
not as a “mysterious art”.

• While software development is not necessarily “harder” or
more difficult than hardware development, it IS different and
needs to be managed accordingly.
– A good software management/product development plan

and meaningful tracking of progress can go a long way
towards mitigating risk and ensuring success.

Software
Management

Plan

BACKUPS

ISD Mission & Strategy

ISD Mission (our core business … our fundamental purpose)

ISD Strategic Goals (the “critical few” targets most important to move us toward our
vision)

To provide high value information systems products, services and
expertise, and to advance information technologies, which are aligned
with customer needs.

1. Deliver high value products and services that satisfy customer needs.
2. Advance leading-edge information systems technology.
3. Build a diverse, talented, innovative, energized, internationally recognized,

workforce of employees and managers.
4. Establish open, flexible, collaborative relationships with customers and

partners.
5. Build a cohesive ‘ no walls’ organization with effective inter & intra

Branch communication and collaboration.

Information Systems Division (Code 580)

ISD provides information systems and systems components, and
expertise in all phases of the science mission implementation process.
To further support our customers and maintain our expertise we
provide leadership and vision in identifying, developing and/or
sponsoring advanced and emerging information systems technologies

Approximately 300 civil servants
Website: http://isd.gsfc.nasa.gov/

New Business AETD Work Breakdown Structure
PROJECT X: Management

Science
Mission Systems Engineering

SE Management
Systems Design
Technical Evaluation
Software SE

Spacecraft
SE
Electrical Systems
Mechanical Systems
Guidance, Navigation & Control
……
Flight Software
S/C Ground Software

Payload
…..
Instrument Flight Software
Instrument Ground Software

Ground Systems
Operations

What is CMMI?

• The Capability Maturity Model Integrated (CMMI) is an integrated
framework for maturity models and associated products that integrates the
two key disciplines that are inseparable in a systems development activity:
software engineering and systems engineering.

• A common-sense application of process management and quality
improvement concepts to product development, maintenance and acquisition

• A set of best practices

• A community developed guide

• A model for organizational improvement
– CMMI divides capabilities into 5 levels (5 highest)
– GSFC Goal of achieving level 3 as beneficial

Software
Development

SW

Systems
SE

Software
Acquisition

CMMI

Capability Maturity Model Integrated (CMMI)-Staged

Level Process Areas

Organization innovation and deployment
Causal analysis and resolution
Organizational process performance
Quantitative project management
Requirements development
Technical solution
Product integration
Verification
Validation
Organizational process focus
Organizational process definition
Organizational training
Integrated project management
Risk management
Decision analysis and resolution
Integrated Supplier Management
Integrated Teaming
Requirements management
Project planning
Project monitoring and control
Configuration Management
Supplier agreement management
Measurement and analysis
Product & Process Quality Assurance

5 Optimizing

4 Quantitatively
Managed

3 Defined

2 Managed

1 Initial

SW -
CMM

SE -
CMM

SA -
CMM

CMMI
Target

CMMI and ISO

• ISO is a standard, CMMI is a model
• ISO is broad- focusing on more aspects of the business. Initially for

manufacturing
• CMMI is “deep”- provides more in-depth guidance in more focused areas

(Software/Systems Engineering/Software Acquisition-SW/SE/SA)
• Both tell you “what” to do, but not “how” to do it
• But CMMI tells you what “expected” practices are for a capable, mature

organization
• CMMI provides much more detail for guidance than ISO by including an

extensive set of “best practices”, developed in collaboration with
industry/gov/SEI

-CMMI provides much better measure of quality of processes; ISO
focuses more on having processes

-CMMI puts more emphasis on continuous improvement
-CMMI allows you to focus on one or a few process areas for
improvement (It’s a model, not a standard, like ISO) --Can rate just
one area in CMMI
-CMMI and ISO are not in conflict: ISO helps satisfy CMMI
capabilities; CMMI more rigorous

CMMI GSFC Structure

Projects

Engineering Process
Group

EPG

MOG

AMG

Asset Management
Group

Management
Oversight Group

Feedback

Metrics
Support

Defined Process

Draft
Process

Institutional
Consensus

Dr. Linda Rosenberg
Judy Bruner
Nelson Keeler
Dorothy Perkins
Arthur F. Obenschain
James Andary
Joseph Hennessy
John Dalton
Jerome Bennett
Sally Godfrey (ad hoc)

Sara (Sally) Godfrey
Representatives from 580, 530, 100, 200, 300, 400, 600

First Year CMMI FSW Area Progress

• Risk Management
– Developed a prototype risk tracking system
– Testing with data from two projects
– Identifying lessons learned to feed into risk management process

• Cost Estimation
– Generic cost estimation techniques examined
– Developing material for a tutorial (presented at JPL at May’02 QMS WS)
– Documenting flight software process
– Working details with FSW people

• Review Guidelines
– Drafted review guidelines
– Incorporating flight software feedback

• Unit Test
– Defined initial unit test standard; working to tailor for ST-5 use
– Working to define metrics

• Inspections
– Defined inspection process developed on JPL/GSFC research task
– Working to tailor process & training initial FSW staff for first use

	Session Goal
	Basic Definitions
	Trends in GSFC Software
	Perceptions -- Two Sides of the Software Coin
	And to Strike Fear in the Heart …
	Mission Information Systems Providers
	ISD: End-to-End Information Systems Providers
	GSFC Mission Critical Software Implementation Overview (1 of 2)
	GSFC Mission Critical Software Implementation Overview (2 of 2)
	Different Domains of Software Each Reflect A Different Emphasis
	Broad Range of Domain Expertise
	Software Life-Cycle Products
	GSFC Problem Summary Perspective
	MAP FSW - One of Many Successes
	Some MAP FSW Points of Note
	MAP FSW Staffing View on a 75SYr Effort
	Mission Critical Development Problems: FOS (1 of 3)
	Mission Critical Development Problems: FOS (2 of 3)
	Mission Critical Development Problems: FOS (3 of 3)
	Mission Critical Development Problems: EO-1 (1 of 3)
	Mission Critical Development Problems: EO-1 (2 of 3)
	Mission Critical Development Problems: EO-1 (3 of 3)
	Mission Critical Development Problems: IRAC (1 of 3)
	Mission Critical Development Problems: IRAC (2 of 3)
	Mission Critical Development Problems: IRAC (3 of 3)
	Mission Critical Software Problems … Lessons Learned
	Steps To Mission Critical Software Success… Development Org’s Perspective
	Steps to Mission Critical Software Success… Project Perspective
	Alarm Signs for Potential Problems (1 of 2)
	Alarm Signs of Potential Problems (2 of 2)
	What Is A Software Life-Cycle ?
	Measuring to Assist Project Management
	Simple Example of Managing Progress
	Sample Earned Value Engineering Build Test Profile
	Current GSFC Mission Software Test Process (1 of 2)
	Current GSFC Mission Software Test Process (2 of 2)
	Software Management Improvements In Process- Organizational
	Software Management Improvements In Process- Technical
	July ‘02 MCS Colloquium Follow-Up Actions
	GSFC CMMI Benefits & First Year Efforts
	Strategies/Plans for FY03
	Software Management Considerations (1 of 2)
	Software Management Considerations (2 of 2)
	… and In Conclusion
	BACKUPS
	ISD Mission(our core business … our fundamental purpose)
	Information Systems Division (Code 580)
	New Business AETD Work Breakdown Structure
	What is CMMI?
	Capability Maturity Model Integrated (CMMI)-Staged
	CMMI and ISO
	CMMI GSFC Structure
	First Year CMMI FSW Area Progress

